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OF TRANSVERSE CROSS SECTION AREA AND DISTRIBUTED 
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Results are provided of a difference scheme simulating the flow of a viscous in- 
compressible fluid in a tube with penetrable walls and discs located inside the 
tube. 

Periodic flows in tubes and channels are encountered in many technological systems and 
energy devices. As an example we note the technological operation of obtaining dielectric 
films in a reactor, widely used in semiconducting devices and integrated circuits. One of 
the first studies, where flow of this type is considered, is, obviously, [I]. Given there 
is a generalized theory of evolving periodic flow and heat exchange in planar channels. A 
similar approach was used in [2] to calculate flow and heat exchange in a tube with periodic- 
ally converging-diverging generating surfaces. A calculation was carried out in [3] of peri- 
odic flow in a tube with an infinite sequence of moving cylindrical containers, where to 
simplify the formulation of periodicity conditions equations were used in variables of the 
stream function - the vorticity. The problem stated was treated in [4], and results were 
provided of calculating axially symmetric turbulent flow near an infinite sequence of discs, 
established in the tube perpendicularly to its axis. 

All studies mentioned are characterized by periodic variation of the flow transverse 
cross section area S: 

S (x) = S (x @ L) = S (x + 2L) . . . .  ( 1 )  

(x i s  t he  c u r r e n t  c o o r d i n a t e  along the  tube or channel  a x i s ) ,  g e n e r a t i n g  p e r i o d i c  v a r i a t i o n  
of  t he  hydrodynamic pa ramete r s .  For p l ana r  or a x i a l l y  symmetric f low the  cor responding  re -  
l a t i o n s  are 

u (x, y) = u (x -I- L, y) = u (x -t- 2L, y) . . . .  ; ( 2 )  

v(x, y ) = v ( x + L ,  ~ ) = v ( x + 2 L ,  y) . . . . .  ; (3)  

p (x, ~I) - -  p (x + C, y) = p (x + C, U) --  P (x + 2C, y) . . . . .  (4)  

where y is the transverse (radial) coordinate. 

The last relation makes it possible to represent the pressure variation along the flow 
in the form of a sum of two components: 

p (x, y ) : - ~ x + P ( x ,  y), (5) 
where the first term determines the linear law of pressure drop with gradient 6, being 
uniquely related to fluid discharge into the tube Q, while the second term characterizes 
the local pressure variation, generated by the local flow deformation. Clearly, since local 
pressure variations are related to the change in flow geometry, the function P(x, y) is 
periodic, i.e., 

P(x, y ) = P ( x @ L ,  g)=P(x-4-2L,  y) . . . . .  (6) 

These periodic flows are investigated in the present paper as applied to the case of 
flow evolution of a viscous incompressible fluid in a tube of circular transverse cross sec- 
tion with an infinite sequence of discs established inside the tube. Unlike the studies 
mentioned above, with the purpose of intensifying transport processes in the tube we re- 
alize here fluid transfer through the lateral surface of the tube, with the total mass flow 
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in the tube varying continuously along its length. We show how this additional condition is 
reflected in the nature of behavior of the parameters (2)-(6). 

Let v 0 be the velocity of uniform fluid delivery through the lateral surface of a tube 
of radius R. With increasing coordinate x the fluid discharge into the tube Q(x) increases 

linearly: 

Q (x) = Qo + 2~RXVo, (7) 
where Q0 is the discharge through some initial cross section with coordinate x. 

Introduce a dimensionless velocity in the longitudinal direction u(x, y), defined as 
the difference between the local velocity u(x, y) and the mean-mass excess velocity V(x) = 
2~Rxv0/S(x) in functions of the mean-mass velocity u 0 in the selected inlet cross section: 

fi(x, v )=  [u(x, ~ ) - - V ( x ) l / U o .  (8) 
The concept of flow evolution in a tube with periodic variation of the transverse cross 

section area is a logical generalization of the theory of evolution of periodic flow in a 
tube with an impenetrable wall. For the flow considered it can be assumed that in cross sec- 
tions removed from each other by distance L the longitudinal velocity profiles u(x, y) are 
similar to each other. This condition, written for the dimensionless velocity u(x, y), is 

~(x, v ) = ~ ( x + L ,  V)=~(x+2L ,  V) . . . .  (9) 
and is a generalization of condition (2) to the case of periodic flow in a tube with fluid 
delivery into it through the lateral surface. 

We investigate the nature of pressure variation along the length of the tube. For this 
we consider one-dimensional flow in a tube of constant transverse cross section with given 
discharge Q0 at the inlet in the presence of a bulk source fluid uniformly distributed over 
the whole flow. In this case the fluid discharge over the length of the tube varies lin- 
early: Q(x) = Q0(l + yx), where 7 is the specific bulk fluid delivery transmitted through 
unit length and referring to discharge over the input cross section. For the given one- 
dimensional flow we write the equations of momentum variation and continuity 

u - + - -  I" udS Qo ( 1 + ~ ) ,  ( 1 O) 8x 8x g 8g 

where Xxy = FSu/dy; F is the transport coefficient, and p is the mean pressure over the 
cross section. 

Integrating the first equation of system (i0) over the area of the transverse cross 
section of the tube, we obtain 

oj 8x (Uz/2 + ~ dS =--2nR* .... 

where x w is the friction at the wall. 

We introduce the mean flow velocity over the cross section fudS=~S and express the 
S 

integral of the square of velocity in terms of the mean velocity, as is done in hydraulics: 

i" tL 2 dS = ~ S  - -  ~Q~(1 + ?x)~/(~RD, 
S 

where ~ = const is a coefficient, taking into account the nonuniformity of velocity distri- 
bution over the cross section (the quantity ~ is independent of x, since for uniform fluid 
delivery from the distributed internal source, obviously, is satisfied by the similar velocity 
profile). 

We rewrite the equation of variation of motion momentum in the form 

dxdP d---x-'d [ ~ -i 2%,R - -  ~ (1 + %,x) 2 j 

Unlike uniform flow in a tube, for which ~w = const, in the flow considered with similar 
longitudinal velocity it can be assumed that friction at the wall varies by the law T w = 
rw0(l + yx), where Xw0 is the friction at the wall at the input cross section of the compu- 
tational region. To sum up, we obtain that the pressure gradient along the length of the 
tube decreases linearly 
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dp - ~ (1 + vx), 
dx 

where ~ = = u ~  + 2~wo/R. 

Hence follows the quadratic law of pressure variation in a tube with a distributed in- 
ternal source: 

�9 = - - 

Turning to periodic flow in a tube with uniform fluid delivery through the lateral sur- 
face, it is logically assumed that the nature of pressure variation due to the total mass 
flow in the tube is the same as for the model problem considered above. Consequently, the 
pressure field can be represented as: 

p (x, 9) = - -  ~x - -  ~x~12 + P (x, Y), ( 11 ) 

where t h e  f u n c t i o n  p (x ,  y ) ,  r e l a t e d  to  t he  l o c a l  f low c h a r a c t e r ,  i s  p e r i o d i c  and obeys con- 
d i t i o n s  ( 6 ) .  

We turn now to investigate a specific flow. The computational module has length L, and 
is included between two neighboring transverse cross sections with a disc established in the 
middle. The transverse cross section area varies by the law S(x) = ~R 2 for x ~ L/2 and 
S(x) = ~R2(I - 0) 2 for x = L/2, where 8 is the ratio of the disc radius to the tube radius. 

The system of equations describing the flow is 

Od 1 Oyv dV ayu 2 ag~v OP 
Ox + g d 9 dx ' Ox + 0 9 = ~ (1 -[- ~x) Ox + 

+ - - ~  vr-v-x,  + o-T-j ,,~ ov , ~ T - + v - - ~  + 

a ( r  ov "~, @uv @v 2 __ ap + a " ov ) 

a ( Ov i - -Vv  dV__~V Ov 
+ T vr a;, / o--7- 

(12) 

Here the velocity components refer to the mean mass velocity u 0 in the inlet cross section 
of the computational module, while the pressure and transport coefficient are normalized, 
respectively, by pup and u0R. The velocity V is determined with account of the relations 
given above, and is normalized by u 0. 

The system of equations (12) is solved for the periodicity conditions (3), (6), (9), and 
for the following boundary conditions: on the y = 0 axis v = 0, 8u/By = 0; on the tube 
wall y = l,iv = v0u0, u = -V(x); and on the disc surfaces at x = L/2, y ~ 0, v = 0, u = 
-V(L/2). By its definition the coefficient y equals 7 = 2~v0RL/(u0 ~R2L) = 2v0/u0. To de- 
termine the coefficient 8 we use the continuity equation in integral form 

( I - -  u) dS = O. ( 1 3 )  
s 

It is noted that Eq. (13) is properly used only in one flow cross section, primarily at the 
outlet. In this case V(x) = 0, the dimensionless velocity u coincides with u, and the inte- 
gral in Eq. (13) can be calculated from the integration results of the system of equations 
(12). 

To solve the system of equations (12) we use the control volume method according to the 
simple method or one of its modifications (see, for example, the studies [5, 6]), taking 
into account the variations generated by the necessity of the determining the coefficient by 
means of Eq. (13). Consider the features of the solution method used here. Application of 
the control volume method to the equation of momentum variation (12) leads to algebraic 
forms of the shape 

r + a ~  a ~ s  S~, ap~p = a~e  + a ~  + + 

where ~ = u, v, in which the coefficients and source term are calculated as a function of 
the approximation scheme adopted of convective and diffusion terms velocity values u, v, 
at the given iteration, periodic pressure P components at the grid sites, and coefficient 6. 
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Fig. i. The stream function field in the computational re- 
gion in the case of impenetrable tube walls for various 
values of the Reynolds number and distances between discs 
with radius @ = 0.75; a) L = 0.6; Re = 500; b) 0.6 and 50; 
c) 0.I and 50; d) 0.i and 5. 

The values found of u* and v* are assumed to be preliminary, and are later corrected in 
such a manner that they satisfy the continuity equations of the system (12) and (13). For 
this we introduce the correcting dependences 6 = u* + u' u", v = v* + v', P = P* + P', ~ = 
6" + 6' 

Unlike the standard SIMPLE procedure, the velocity component ~ has twocorrections (u' 
and u"), where the corrections u' and v' are expressed in terms of the corresponding differ- 
ence of corrections to the pressure function P', while the second velocity correction u" is 
calculated in terms of the correction to the linear pressure gradient component S'. The 
corrective dependence for the pressure function P' is obtained, as in the SIMPLE procedure, 
in the form of a difference Poisson equation, while the correction ~' is found by the equa- 
tion [4, 6]: 

_ (- -7- /AA),  
i n  w h i c h  t h e  s u m m a t i o n  i s  c a r r i e d  o v e r  a l l  s i t e s  l o c a t e d  i n  t h e  i n l e t  c r o s s  s e c t i o n .  H e r e  
v o l p  i s  t h e  v a l u e  o f  t h e  c o n t r o l  v o l u m e ,  a n d  AA i s  t h e  b o u n d a r y  a r e a  i n  t h e  t r a n s v e r s e  d i -  
r e c t i o n .  

We d i s c u s s  t h e  r e s u l t s  o f  c a l c u l a t i o n s  o b t a i n e d  on  t h e  b a s i s  o•  t h e  t h e o r y  a n d  m e t h o d  
developed. We first dwell on the features of flow periodicity in the case of a tube with 
impenetrable walls. Figure 1 shows the stream function field within the computational re- 
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Fig. 2. The stream function field during fluid delivery 
through the tube wall in a module of size L = 0.6 with dis& 
radius 8 = 0.75 for various values of the Reynolds number 
and fluid delivery rate: a) Re = 50; v 0 = 0.5; b) 500 and 
0.i; c) 500 and 0.25; d) 500 and 0.5. 

gion for various values of the Reynolds number Re and the module size L. For relatively 
small L values (L < 0.8) the flow can be divided conditionally into two parts: the flow 
in annular space, confined by the tube surface and the coaxial cylindrical surface covering 
the disc roots, and the flow in the cylindrical space between the discs. The stream line 
pattern shows that in the annular region mentioned the flow approximates flow in a circular 
tube. The stream lines are almost rectilinear, their deformation is observed only near the 
disc edges, and in several cases, due to local breaks of low intensity - at the tube surface, 
while the deformation indicated is enhanced with decreasing Reynolds number Re and increas- 
ing interdisc distance L. Due to the flow discontinuity at the edges, vortical fluid mo- 
tion with formation of a large-scale vortex is generated in the space between the discs. 
The longitudinal vortex size equals to the distance L in all regimes, while the transverse 
size is primarily different from the size L. With decreasing L the radial size of the vor- 
tex also decreases, it tightens down to the peripheral part of the computational region, 
and a stagnant region is formed directly near the axis. An increase in the Reynolds number 
leads to enhancement in the vortex formation pattern, as well as to attenuation of the rela- 
tive intensity of the return flow formed. The intensity of the return flow drops sharply 
with decreasing distance L, in which case the effect of the Reynolds number on the nature 
of formation of return flow is reduced. 

Fluid delivery through the lateral tube surface varies substantially the flow pattern 
in the annular space over the disc edges (Fig. 2). Near the tube wall the stream lines have 
a slope, which is higher the larger the relative velocity of fluid delivery v0. However, 
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Fig. 3. Pressure variation over the module length for L = 0.6 
and 8 = 0.75 at the tube surface and axis in a tube with an im- 
penetrable wall (a, b) and for fluid delivery through a tube t 
wall with relative velocity v 0 = 0.25 (c, d) for various Rey- 
nods number values: a, b; Re = 50; c, d; 500. 

in the fluid layer directly adjacent to disc edges the nature of low is close to that which 
would occur in a tube with an impenetrable wall. The stream lines approach here the straight 
line parallel to the axis, though their extent of deformation is higher (see Figs. i, 2). 
In this case one large-scale vortex is formed here, whose intensity increases with increas- 
ing fluid delivery rate v 0. For low L values vortex generation in the opposite direction is 
possible in the region adjacent to the leeward side of the disc and to the axis. The in- 
tensity of this opposite vortex is insignificant, it narrows down the basic contribution of 
the main vortex to the windward side of the disc below the flow and to the annular flow re- 
gion, and can even divide it into two vortices of lesser size and intensity. 

Not dwelling on the features of behavior of other parameters, we turn to the study of 
pressure variation over the flow and the hydraulic resistance of the tube-disc system under 
consideration. Figure 3 shows plots for the pressure at the tube surface Pw and at the axis 
P0 for values of the Reynolds number Re = 50 and Re = i00 in the case~ of an impenetrable 
wall and fluid delivery through the tube wall with relative velocity v 0 = 0.25. The plots 
constructed reflect the fact noted above of existence in the flow of two different flow 
types - the tube in the annular gap between the disc edges, and tbe tube with stagnant vor- 
tex in the space between discs. 

For an impenetrable wall the pressure at the tube surface Pw decreases almost linearly, 
except for a small region near th~ disc, coinciding with the nature of pressure behavior in 
the case of evolution of laminar fluid flow in a tube. Fluid delivery through the lateral 
surface leads to a nearly parabolic pressure variation law with length Pw, corresponding to 
the theoretical discussion presented above. The behavior of the Pw curves shows that the 
sharp disc edges at relatively small L values (L < 0.6) deform slightly the annular flow, 
carrying the basic mass of the fluid. 

In the case of an impenetrable wall, on the axis and in the space between neighboring 
discs the pressure P0 is conserved, reflecting the existence of a stagnant zone or a zone 
of weak vortical flow between the discs. For fluid delivery through the lateral surface 
vortical motion is substantially activated, particularly for large Reynolds number values. 
As a result the pressure at the axis becomes nonuniform - upon moving away from the wind- 
ward side of the disk the quantity P0 initially drops, and then increases with direction 
toward the windward side of the disc from below the flow. The pressure varies jumpwise 
upon transition through the disc location cross section. 
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Fig. 4. The dimensionless pressure gradient g, averaged over 
the module length, as a function of the Reynolds number (a), 
the module length (b), and the disc radius (c) (L = 0 - Eq. 
(14); L = 0.i, 0.2, and 0.6 - calculated for Re = 5, 50, 500 
and 0 = 0.75 (a, b)): a) 1 - theory (L = 0), 2-4 - calcula- 
tion (L : 0.i, 0.2, 0.6); a) 1 - 6 (Re : 500); 2 - 6/10 (Re = 
50); 3 - 6/100 (Re : 5); c) 1 - L = 0; 2 - 0.I; 3 - 0.6 (Re : 
5o).  

The hydraulic resistance of the tube-disc system under consideration is characterized 
by the dimensionless parameter ~, which for uniform flow in a tube with impenetrable walls 
is normalized Over the mean-discharge flow rate of pressure gradient, and for fluid deliv- 
ery through the lateral surface - by the linear part in the parabolic pressure variation 
law. Since the pressure drop is basicall~ determined by the flow in the annular region be- 
tween the tube surface and the disc edges, it is logical to carry out a comparison with the 
similar quantity for flow in a circular tube of width 1 - 8. Using, to eliminate dimen- 
sions, the characteristic values selected earlier, more precisely the tube radius R and the 
mean flow velocity over the tube cross section u 0, the equation for determining the dimen- 
sionless pressure gradient in a circular tube is represented in the form 

12 1 
P0 - - -  (14) 

Re ( 1 - - 0 )  a (1 -~O)  

F o r  a c i r c u l a r  t u b e  w i t h  f l u i d  t r a n s f e r  t h r o u g h  t h e  l a t e r a l  s u r f a c e ,  t o  d e t e r m i n e  ~ we 
i n t e g r a t e  Eq.  ( 1 0 )  o v e r  t h e  s e g m e n t  1 - 0 < y / R  < 1. S i n c e  t h e  f l o w  o b e y s  i n  t h e  p r e s e n t  
c a s e  t h e  same l a w s  a s  f l o w  i n  a c i r c u l a r  t u b e  w i t h  a s i m i l a r  p e n e t r a b l e  w a l l ,  on t h e  b a s i s  
o f  t h e  d i s c u s s i o n  a b o v e  o n e  c a n  w r i t e  

dp* 1 cO ( i, COu*'I 
T - 7 cOy Y .J ' 

w h e r e  d p * / d x  d e n o t e s  t h e  q u a n t i t y  [1/(1 + yx)l d/dx [P-l- ~U2(1 ~- Yx)Z/21; .u* = u (1 + yx); y ----- 2Vo/[UR (1 - -  
0z)]; U= Ql[~RZ(l--ez)]i is the mean-mass velocity in the inlet cross section of the circu- 
lar tube, and Q is the fluid discharge in the inlet cross section. 
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Fig. 5. The relative hydraulic resistance coefficient $/$0 
as a function of the relative fluid delivery rate through 
the lateral surface of the tube for various distances be- 
tween discs and various values of the Reynolds number Re = 
500 (a) and 50 (b): i) L = 0 (theory, Eq. (15)); 2, 3) L = 
0.i and 0.6 (calculated for e = 0.75). 

The equation given is similar to the equation describing flow in a circular tube with 
impenetrable walls. Using for the characteristic velocity the quantity u 0 = Q/(~R2), so 
that U = u0/(l - e=), relating p* to pu~ and x to R, and taking into account that at the 
inlet cross section u = u* for x = 0, we obtain for the dimensionless gradient $* = (dp*/ 

dx)R/u~ the same value as in Eq. (14). Turning from the function p* to the pressure p, de- 
noting the dimensionless pressure gradient at x = 0 by ~0[(Sp/Sx)R/pu~]0, and taking into 
account that the coefficient ~ for circular laminar flow equals 1.5, we find a dependence 
for $ of the form 

3 
= Po ~ v, ( i 5 )  

( 1 -- OZ) z 

where ~0 is determined by Eq. (14), and V = v0/u 0. 

Figure 4 shows plots of the dimensionless pressure gradient in a tube with an impene- 
trable wall as a function of the Reynolds number and of the geometric parameters L and 0. 
The value L = 0 corresponds to the case of flow in a circular tube. It is seen from Fig. 4a 
that the flow periodicity due to disc location in the tube does not change the inversely 
proportional dependence of the coefficient ~ on the Reynolds number. The proportionality 
coefficient in the dependence ~(Re) decreases with increasing L. This implies that a con- 
tinuous internal wall of a circular tube generates in the flow a larger pressure loss than 
a periodic sequence of bulging discs and a stagnant zone between them, confining the circu- 
lar flow inside. The given conclusion deserves attention independently of the practical 
consideration provided above for these flows. 

A representation of the quantitative variation of $ with increasing L is given by Fig. 
4b. It is seen that with increasing Reynolds number the drop rate in the quantity ~ in- 
creases with increasing periodicity parameter L. The nature of ~ variation with increasing 
disc radius (the parameter 8) is determined by the curves in Fig. 4c. With increasing 0 the 
enhancement in $ occurs faster than the distance between discs decreases. 

The effect of fluid delivery on the hydraulic resistance of the tube-disc system is 
characterized by the plots showing the variation in the coefficient ~/~0 (Fig. 5). With 
increasing fluid delivery rate through the wall of the tube (the parameter V) the coeffic- 
ient ~ increases nearly linearly. It is noted that the theoretical curve 1 was constructed 
by Eq. (15) and determines, as already mentioned, the resistance of a circular tube. The 
plots show that for fluid delivery through the exterior surface of the tube the hydraulic 
resistance of the tube-disc system increases, becoming substantially larger than for the 
same fluid delivery in a circular tube. This effect is manifested more substantially for 
high values of the Reynolds number. As to the effect on the resistance of geometric sizes, 
and as is seen from the results given, the hydraulic resistance of the tube-disc system in- 
creases with increasing distance between discs. 
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In conclusion we note one more interesting and practically important feature of the 
results, at least for the class of problems under consideration. The essence is that for 
small values of the Reynolds number (Re = 50) the hydraulic resistance of the tube-disc sys- 
tem with fluid delivery through the lateral surface of the tube is below the corresponding 
value for a circular tube (L = 0) for small values of the fluid delivery rate (V < 0.3). 

NOTATION 

Here R denotes the tube radius, 8 is the relative radius of the disc, L is the dis- 
tance between discs (module size), u, v are the velocity projections on the coordinate axes, 
Qx is the discharge in an arbitrary cross section, u 0 is the mean-mass velocity at the in- 
let cross section, V is the dimensionless injection rate, u is the excess dimensionless 
velocity in the axial direction, p is the pressure, P is the pressure component related to 
local vortical motion, 8 is the linear pressure component due to the total mass flow, 7 is 
the quadratic pressure component due to injection through the lateral surface, and Re de- 
notes the Reynolds number. 
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